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Abstract. We present measurements of the microwave complex conductivity at 23.9 and 48.2 GHz in
YBa2Cu3O7−δ films, in the fluctuational region above Tc. With increasing temperature, the fluctua-
tional excess conductivity drops much faster than the well-known calculations within the time-dependent
Ginzburg-Landau theory [H. Schmidt, Z. Phys. 216, 336 (1968)]. Approaching the transition temperature,
slowing down of the fluctuations is observed. We discuss the results in terms of a modified Gaussian theory
for finite-frequency fluctuational conductivity, where renormalization is introduced in order to account for
the T → Tc regime, and a spectral cutoff is inserted in order to discard high-momentum modes. The data
are in excellent agreement with the modified theory, when formulated for three-dimensional, anisotropic
superconductors, in the whole experimentally accessible temperature range, and for both frequencies.

PACS. 74.25.Nf Response to electromagnetic fields (nuclear magnetic resonance, surface impedance, etc.)
– 74.40.+k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.) – 74.72.Bk
Y-based cuprates

1 Introduction

High-Tc superconductors are particularly suitable for the
study of fluctuational effects: high critical temperatures,
short coherence lengths and strong anisotropy have as a
direct consequence a strong widening of the temperature
window where fluctuations dictate the behavior of vari-
ous physical observables. In particular, it is widely rec-
ognized that the temperature region where critical fluc-
tuations might be observable can be of order ∼1 K [1].
On the other hand, the widening of the fluctuational tem-
perature window extends to the high temperature region,
thus giving the opportunity to test the validity range of
fluctuational models beyond the T → Tc limit. It appears
that both the regions close to and far from Tc are worth
of being investigated in cuprates.

Like in conventional, low-Tc superconductors [2], most
of the experimental data have been collected by measur-
ing dc conductivity [3–13]. Finite-frequency experiments,
however, are a potential source for additional information,
such as the estimate of the Ginzburg-Landau (GL) re-
laxation time. Moreover, a finite-frequency study in the
fluctuational regime is in principle a more stringent test
for theoretical models, since at a single frequency two
curves (real and imaginary parts) have to be fitted by
the model with the same parameters, and similarly the
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model must fit to the frequency dependence. A draw-
back is that measurements at frequencies high enough to
yield data significantly different from the dc case (typi-
cally, in the microwave range) are rather difficult to per-
form near the normal state (most of the microwave exper-
iments are optimized to small values of the impedance, i.e.
well below the transition). In fact, in low-Tc superconduc-
tors only a very few measurements of the complex excess
conductivity have been performed [14], most of them at
microwave frequencies or above. In cuprates, some mea-
surements focussed to the temperature region very close
to Tc, in order to assess the relevance of critical fluctu-
ations [15–18], and only a few reports [19,20] explored a
wider temperature range above Tc. In this latter case, a
significant reduction of the fluctuational conductivity be-
low the theoretical expectations as calculated within the
time-dependent Ginzburg-Landau theory [21] was found.
This feature was connected to the progressively smaller
contribution of the high-momentum modes to the excess
conductivity, as the temperature is raised above Tc: the
so-called short-wavelength cutoff (SWLC) regime. Such
a physical phenomenon has been successfully invoked to
describe the excess dc conductivity in conventional super-
conductors [22] and cuprates [3,5,11–13]. It is then in-
teresting to check this approach against a more stringent
test, such as multifrequency measurements of the complex
conductivity.
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We notice that all the estimates of the excess conduc-
tivity (in zero magnetic field) rely on the assumption of
some kind of normal state, existing at temperatures well
above Tc, from which superconductivity emerges. In this
paper we will follow the same approach, assuming in par-
ticular a linear T -dependent normal state above Tc, but
we mention that alternative scenarios, connected to the
so-called pseudogap phase, could affect some of the con-
clusions that have been given in all the papers devoted
to the zero-field paraconductivity. To mention a few of
the possible alternative scenarios, intrinsically inhomoge-
neous superconductivity [23] would lead to a dissipation-
less state at the percolation threshold, with excess dia-
magnetism and anomalous frequency dependence of the
surface impedance in the pseudogap region; preformed
pairs well above Tc, invoked for the interpretation of the
optical conductivity [24], and competing order parame-
ters [25], with a hidden phase transition at the pseudogap
T �, could as well increase the in-plane conductivity, thus
giving an estimate of the paraconductivity lower than the
one obtained with a linearly extrapolated normal state.
It is then in any case necessary to consider models that
predict a reduced paraconductivity with respect to the
established theory [21].

In this paper we present measurements of the fluc-
tuational complex conductivity ∆σ in two high quality
YBa2Cu3O7−δ (YBCO) thin films as a function of the
temperature, and for two microwave frequencies (23.9 and
48.2 GHz). We show that the well-established theoretical
result [21] does not describe either the frequency depen-
dent excess conductivity approaching Tc, or the fast drop
of the excess conductivity as the temperature is raised far
from Tc. We extend the established model [21] to include
the short-wavelength cutoff [26], which accounts for the
reduced paraconductivity far from Tc, and the renormal-
ization [17,27], effective close to Tc. The extended model
describes very well the temperature and frequency depen-
dence of the complex conductivity. Several superconduct-
ing parameters are also evaluated.

2 Experimental section

The complex conductivity was obtained from measure-
ments of the temperature dependence of the quality fac-
tor and frequency shift of cylindrical metal cavities, reso-
nant in the TE011 mode. The sample was mounted as an
end wall, so that microwave currents flow in the (a, b)
planes, and measurements yielded the (a, b) plane re-
sponse. The experimental systems, extensively described
elsewhere [28–30], were modified in order to measure the
frequency shift [31]. Two cavities were used, for measure-
ments at ω/2π= 23.9 and 48.2 GHz. Accurate calibration
of the resonators was performed, in order to obtain the
effective surface resistance Reff and the temperature vari-
ation of the effective surface reactance ∆Xeff .

Two YBa2Cu3O7−δ films, with transition tempera-
tures Tc ∼ 90 K, were grown on 1 cm × 1 cm × 1 mm
LaAlO3 substrates by planar high oxygen pressure dc
sputtering technique. The thickness of the films was

Fig. 1. Measurements of the real part of the resistivity at 48.2
GHz (open symbols) and 23.9 GHz (thick line). Dashed line:
extrapolated normal-state resistivity. Inset: imaginary part of
the resistivity. Symbols as in main panel. Measurements taken
on sample YA.

d=(2200± 200) Å. Details of the film growth [32] and char-
acterization [32,33] have been reported elsewhere. Typical
characteristics of these films are [32]∆Tc <0.5 K (from in-
ductive measurements), surface resistance below 80 µΩ at
77 K and 5.4 GHz, and FWHM of the rocking curves of
the (005) peak of 0.1◦ (indicating excellent c-axis orienta-
tion). X-ray Φ-scan analysis [33] indicated strong biepitax-
iality along (a-b) plane. Average roughness of 20 Å over
1 µm × 1 µm area was determined by AFM. The thick-
ness of the films was of the order of the zero-temperature
London penetration depth, so that close and above Tc

the thin-film approximation is fully justified. Thus, the
measured effective impedance directly yields the complex
resistivity [34] through: Reff � ρ1/d, ∆Xeff � ∆ρ2/d.
By accurate comparison with the cavity background, we
did not resolve a frequency shift due to the sample above
∼95 K. We then assumed ρ2 = 0 in our near-optimal
doping samples in the normal state (recent microwave
measurements [35] have shown that this ansatz can be
violated in underdoped samples, but it is valid in opti-
mally doped cuprates), so that from the measured quality
factor and frequency shift we get the complex resistivity,
ρ(T ) = ρ1(T, ω)+ iρ2(T, ω). The as-extracted complex re-
sistivity of sample YA is reported in Figure 1 for the two
frequencies investigated.

The complex excess conductivity ∆σ(T, ω)=∆σ1(T, ω)
+ i∆σ2(T, ω)was calculated by subtracting the temper-
ature dependent normal state real resistivity ρn(T ) =
1/σn(T ), linearly extrapolated above 130 K, accordingly
to the expression:

ρ(T, ω) = ρ1(T, ω) + iρ2(T, ω) =
1

σn(T ) +∆σ(T, ω)
. (1)

We carefully checked that by changing the temperature
range of the linear fit of the normal state resistivity in the
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region 125 K–165 K we did not affect the obtained ∆σ
below 110 K.

In doing all the necessary transformations from mea-
sured quality factor and frequency shift to complex ex-
cess conductivity, an easily calculated geometrical factor
is needed. Errors in the geometrical factor, as well as in
the estimate of d, all reflect on a simple scale factor in the
calculated conductivity, without affecting the temperature
dependence.

Before discussing the data for ∆σ, we summarize the
theoretical framework that we adopt.

3 Theoretical background

In this section we summarize and further extend well
known and recent results for the complex excess conduc-
tivity of an anisotropic, three dimensional superconduc-
tor. Explicit calculations, in 3D, 2D and 1D, have been
reported previously [26].

On theoretical grounds, fluctuational phenomena in
superconductors have been addressed by microscopic as
well as by phenomenological theories (see, e.g., the reviews
in Refs. [2,36,37]). The time-dependent Ginzburg-Landau
(TDGL) approach is very useful since it allows for a first
determination of important parameters, such as the co-
herence length and the relaxation time. Moreover, it often
captures, in its simplicity, the basic ingredients of the un-
derlying physics. In this section, we will give a formulation
of the finite-frequency fluctuational excess conductivity in
terms of this formalism. Since we are dealing with YBCO,
anisotropy has to be taken into account. Due to the mod-
erate anisotropy of this compound, we choose a descrip-
tion in terms of uniaxially anisotropic three-dimensional
superconductor (we will come back to the consistency of
this choice in the Discussion).

Calculation of fluctuational conductivity can be per-
formed within several formalisms, such as the Kubo for-
mula, the Boltzmann equation [38,39] and the correlation-
function formalism. We adopt here the model based on the
correlation-function formalism [27], extended to include
the uniaxial anisotropy [17]. This approach is based on
the following very general points:
1- The GL functional is written as an expansion in ψ (the
order parameter).
2- The response to a time-varying field A(t) (A is the
vector potential) is determined by the current operator
averaged with respect to the noise (represented below
by the brackets), and it can be expressed as a func-
tion of the correlation function of the order parameter
C (r, t; r′, t′) = 〈ψ (r, t) ψ� (r′, t′)〉 at equal times:

〈Jx (t)〉 = −�e�

mx

∫
d3q

(2π)3
qxC

[
k = q − e�

�
A (t) ; t, t

]
(2)

where the momentum dependence has been shifted from
k to the new vector q = k + (e�/�)A (t), e� = 2e is twice
the electronic charge, and mj are the masses of the pair
along the main crystallographic directions.

Standard calculations of the fluctuation conductivity
are performed using the following conditions:
i) integration can be extended to the full momentum
space, being the contribution at q = 0 the most diverging
close to Tc;
ii) terms containing powers of ψ higher than 2 are dropped
in the GL functional.
Using these hypotheses, one gets in a uniaxially
anisotropic 3D superconductor, and in absence of
a dc magnetic field, the in-plane excess conductiv-
ity (in Sistème International units): ∆σ∞(ε, ω) =

e2

32�ξc(0)ε1/2 [S+ (w) + iS− (w)], where ε = ln(T/Tc) is
the reduced temperature [40], ξc(0) is the out-of-plane
zero-temperature GL coherence length and w = ωτ with
τ = τ0/ε the temperature dependent GL relaxation time.
S+(w) and S−(w) are the scaling functions as can be
found in reference [27], and they have the property that
S+(w → 0) � 1 − w2

16 and S−(w → 0) � w
6 . We will refer

to this result as “infinite cutoff approximation” (IC), and
we will use the subscript “∞” for it. The above reported
expression for ∆σ∞, originally derived [21] for isotropic
superconductors, was found to well describe microwave
fluctuational conductivity in conventional superconduc-
tors [14]. Moreover, a scaling property was found close to
Tc in YBCO films in swept-frequency measurements [16],
even if the temperature dependence of τ was markedly
different from the GL prediction.

At temperatures sufficiently higher than Tc the ap-
proximation i) above should be somehow relaxed. In fact,
equation (2) should be integrated only over momenta that
give a physical contribution: modes with q > ξ−1

0 , where ξ0
is the temperature-independent coherence length, should
be discarded. This fact was recognized early in the study
of the dc excess conductivity [22], and largely applied to
various superconductors [9,11–13,22,41]. However, the ab-
sence of explicit expressions for the complex excess con-
ductivity has limited the application of such approach to
a few experimental results, and numerical methods had to
be used [19,20]. The usual way to discard high-momentum
modes is to introduce a spectral cutoff qmax

j = Λjξ
−1
j0

for each crystallographic direction in equation (2) and to
calculate the cutoff excess conductivity. In order to sim-
plify the resulting expression, and to reduce the number
of fitting parameters, we choose a single cutoff number
imposing:

√ ∑
j=1,..3

[qmax
j ξj(0)]2 < Λ (Ref. [42]). The re-

sulting complex excess conductivity can be calculated ex-
plicitly [26], and for a uniaxial superconductor the result
reads:

∆σ3D =

e2

32�ξc(0)ε1/2

16
3πw2

{
atn K − (1 − iw)3/2 atn

(
K√

1 − iw

)

+iw
[

K

2 (1 +K2)
− 3

2
atn K

]}
(3)

where K = Λ/ε
1
2 . In order to clarify some of the main fea-

tures of equation (3), it is useful to introduce the small w
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expansion. Up to terms of order w2 one has:

∆σ1(ε, w � 1) � e2

32�ξc(0)ε1/2

×
{

2
π

[
atnK − K

(1 +K2)2

(
1 +

5
3
K2

)]
+ o(w2)

}
(4)

∆σ2(ε, w � 1) �
e2

32�ξc(0)ε1/2

w

6
2
π

[
atnK+

K

(1 +K2)3

(
K4 − 8

3
K2 − 1

)]
.

(5)

Like in the IC approximation, the leading term in the real
part is frequency independent and the corresponding term
in the imaginary part is proportional to the frequency. On
the other hand, the cutoff affects strongly the tempera-
ture dependences, in particular on the real part (see also
the discussion in Ref. [26]). It is then expected that the
analysis of the data in the region w � 1 can be used to
easily discriminate between the IC and the finite-cutoff
expressions.

Regarding the assumption ii), it becomes less and less
acceptable approaching very closely Tc. In order to take
into account the critical fluctuation regime, Dorsey [27]
has released that assumption by using the Hartree ap-
proximation for the quartic term in ψ, and keeping the
validity of i) above. The resulting expression of the com-
plex excess conductivity remained unaffected, including
the scaling functions S+(x) and S−(x), and the effect of
the extended approach was to change the temperature de-
pendence of the reduced temperature ε (renormalization)
according to:

ε̃ = ε
ε

η

[
1 +

(
1 +

ε

η

)1/2
]−2

. (6)

When one takes into account the anisotropy [17],
in the preceding expression η = l2κ4γ2ξ2ab(0), l =(
e2 µ0 kBT/4π �

2
)
, µ0 is the magnetic permeability, γ =

ξab(0)/ξc(0) is the anisotropy factor and κ = λab(0)/ξab(0)
is the Ginzburg parameter, and ξc(0) and λab(0) are the
zero-temperature values of the GL out of plane coherence
length and in-plane penetration depth, respectively. Sum-
marizing, in the Hartree approximation the fluctuational
excess conductivity has the same form as in the IC, un-
renormalized limit, with the replacement ε → ε̃. We re-
mark that close to Tc the temperature dependence of the
GL relaxation time changes to τ ∼ ε−2, showing the so-
called slowing down of fluctuations.

We note that the two above-described modifications to
the IC, unrenormalized approximation have a significant
relevance in different temperature ranges: the renormaliza-
tion is relevant only close to Tc (T − Tc � 2 K), while the
influence of the cutoff in equation (3) shows up above that
temperature range. We then cast together the two modi-
fications by substituting ε with ε̃ in equations (3, 4, 5).

Fig. 2. Complex excess conductivity as a function of the tem-
perature in sample YA. Open symbols: ∆σ1, full symbols: ∆σ2.
Squares: 23.9 GHz, circles, 48.2 GHz. Above ∼ 90.5 K, ∆σ1

does not exhibit significant frequency dependence. It is also
seen that ∆σ2 scales approximately as ω.

In concluding this section, we ought to mention that
the cutoff approach is still somehow debated. However,
it is believed to be a fundamental aspect of the GL the-
ory [37,43,44]. In the specific case of the dc, 2D excess
conductivity, we have thoroughly discussed the similari-
ties between the GL cutoffed model and the microscopic
theory [45], and we have shown that the GL expression
with cutoff reproduces nearly exactly the microscopic the-
ory for clean superconductors, when the appropriate cutoff
number is chosen.

Finally, we comment on the fact that the momentum
cutoff is not the only possible approach in order to extend
the validity of the GL theory beyond the vicinity of Tc. In
fact, an alternative choice is the so-called “total energy”
cutoff [12], where it is the kinetic + localization energy
of the (fluctuating) Cooper pair that is limited to some
value. The results for the ac excess conductivity are for-
mally identical to the ones reported in Section 3, with the
substitution Λ → √

c2 − ε, with c a new cutoff number,
as noted earlier [26], in analogy with the other physical
quantities [46]. Equation (3) modified in order to use a
total energy cutoff would exhibit a stronger decrease of
the excess conductivity at high ε, with vanishing ∆σ at
ε = c2.

4 Discussion

We now discuss our data in light of the theoretical frame of
Section 3. We first identify the temperature region where
w � 1 in our data. In Figure 2 we present the com-
plex excess conductivity at 23.9 and 48.2 GHz in sample
YA as a function of T . As can be seen, at temperatures
above 90.5 K the frequency dependence is nearly absent
in ∆σ1, indicating that the GL relaxation rate 1/τ0 is
much larger than our measuring frequency (see Eq. (4)).
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Fig. 3. Comparison with plain 3D infinite cutoff predictions,
(∆σ1)

−2 ∝ T − Tc. Clear curvature in (∆σ1)
−2 is evident, in

disagreement with the infinite cutoff approximation. Data refer
to sample YA at 48.2 GHz.

Consistently (see Eq. (5)), the imaginary part ∆σ2 scales
approximately as the ratio of the measuring frequencies.
These features represent the experimental indication that,
for most of the temperature range here explored, the small
frequency regime is reached.

We now show that the simple IC model is not com-
patible with our data. Using the fact that, within 1%, one
has ε � T

Tc
− 1 up to T = 1.1Tc, the IC approximation in

the small w regime predicts ∆σ−2
1,∞ ∝ T − Tc in a rather

wide temperature range, as opposed to the cutoff expres-
sion (see Eq. (4)), that removes this simple temperature
dependence.

In Figure 3 we plot the data as (∆σ1)
−2 vs. T . It is

clear that our data do not follow a linear law in a signif-
icant temperature range, as would be expected from the
IC approximation. The temperature and frequency depen-
dence of ∆σ further indicate (see later and Fig. 4) that
the simple IC prediction does not describe our data. We
conclude that a proper description for our data of the
fluctuational conductivity must be found beyond the IC
approximation.

We adopt the extension of the TDGL theory described
in Section 3. In order to take into account temperatures
far from Tc as well as the approach to the critical re-
gion, we use in the full expression, equation (3), the renor-
malized reduced temperature, equation (6). The resulting
explicit expression for the complex ∆σ contains as param-
eters the cutoff number Λ (effective mostly at high tem-
peratures), the out-of-plane, zero-temperature GL coher-
ence length ξc(0) (which acts mainly as a scale factor), the
GL relaxation time τ0 (determined mainly through ∆σ2),
the number η (which determines the reduced tempera-
ture range of the renormalized regime), or alternatively
the zero-temperature, in-plane penetration depth λab(0),
and Tc.

Fig. 4. Complex excess conductivity as a function of the re-
duced temperature ε = ln(T/Tc). Open symbols: ∆σ1, full
symbols: ∆σ2. Upper panel: 23.9 GHz, lower panel: 48.2 GHz.
Data taken on sample YA. Full lines are fits with equation (3),
with parameters as in Table 1. Dashed lines are unrenormal-
ized, infinite cutoff, best fits, with τ0= 27 fs and the scale
factor ξc(0)=2.8 Å chosen to match the experimental ∆σ1 at
23.9 GHz. The conventional model is clearly inadequate in or-
der to simultaneously fit the four experimental curves.

An extremely precise determination of Tc is not essen-
tial, since the main point of this paper is the “high” tem-
perature regime. Nevertheless, scaling theories [27] in a
3D superconductor suggest the following path for its eval-
uation: in fact, one has ∆σ1(T → Tc) = ∆σ2(T → Tc),
so that the crossing point of the real and imaginary parts
should give the critical temperature. Unfortunately this
determination can be easily affected by experimental er-
rors in the evaluation of the absolute value of the excess
conductivity such as those mentioned in Section 2. We
have then chosen to keep Tc as a parameter of the fit, keep-
ing in mind that it cannot be noticeably different from the
cross-point T× of the real and imaginary parts of ∆σ. The
values of the crossing temperature T× and the fitted Tc

are reported in Table 1, and good agreement is found.
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Fig. 5. As in Figure 4, but data are taken on sample YB.
Open symbols: ∆σ1, full symbols: ∆σ2. Upper panel: 48.2 GHz,
lower panel: 23.9 GHz. Full lines are fits with equation (3), with
parameters as in Table 1.

All the parameters are fixed by the simultaneous fit-
ting of four experimental curves in each sample: real and
imaginary parts at two different measuring frequencies.

Fits are presented in Figures 4 and 5 as continuous
lines. It is clear that the extended model well describes
our data for both microwave frequencies, as opposed to the
failure of the IC approximation (dashed lines in Fig. 4).
In particular, it is the temperature dependence at large ε
that clarifies the role of the cutoff, while the slowing down
of fluctuations at Tc is described by the renormalization.

The so-obtained fitting parameters are summarized in
Table 1. The zero-temperature c-axis coherence lengths,
ξc(0), are in agreement with commonly accepted val-
ues [47]. The renormalization parameter η � 7 × 10−3

(corresponding to a GL λab(0) � 900 Å) indicates that
in a region ∼0.6 K wide close to Tc the corrections due
to the ψ4 term cannot be neglected. The cutoff number
Λ is of the correct order of magnitude, and appears to be
sample-dependent. We already found [13] (from dc con-
ductivity) that in slightly overdoped Bi2Sr2CaCu2O8+x

crystals there was a doping-dependence of the cutoff num-
ber. It would be interesting to look for a similar depen-
dence in YBCO. We note that the obtained parameters are

Table 1. Crossing temperatures of real and imaginary parts
T× at the two measuring frequencies (see text) and fit pa-
rameters: critical temperatures Tc, zero-temperature c-axis co-
herence length ξc(0), GL relaxation time τ0, renormalization
parameter η (see Eq. (6)), and cutoff number Λ.

Sample YA Sample YB

T×
23.9(K) 89.3 89.25

T×
48.2(K) 89.5 89.3

Tc(K) 89.45 89.25

ξc(0)(Å) 3.3 2.8

τ0(fs) 27 29

η(Å) 7 × 10−3 7 × 10−3

Λ 0.55 0.65

consistent with the 3D treatment here employed: in fact,
in order to neglect the layered structure one needs the

anisotropy parameter
(

2ξc

t

)2

(t � 7 Å is the spacing be-
tween superconducting planes in YBCO) to be sufficiently
larger than Λ2 (Refs. [37,39]). With our parameters we ob-
tain a factor ∼ 3 between the two quantities, that points
to an essentially 3D nature of YBCO.

The GL relaxation time is found to be slightly sam-
ple dependent, in agreement with results obtained from
the analysis at microwave [16] and radio [48] frequencies
and from combined excess diamagnetism and conductivity
measurements [49]. The numerical value for τ0 is notice-
ably larger than the BCS estimate, τ0 = �π

16kBT � 17 fs
(having taken T = Tc), in qualitative agreement with ref-
erence [16]. A possible interpretation of this finding comes
from the unconventional nature of the pairing in cuprates.
In fact, it is expected [37] that in a d-wave superconduc-
tor the GL relaxation time is larger than the BCS, s-wave
estimate. It is clear that this intriguing point deserves fur-
ther experimental work in the future, possibly expanding
the frequency range explored.

5 Conclusions

We have measured the excess complex conductivity at two
microwave frequencies in very high quality YBCO films.
The temperature dependence of the data in the region
ωτ � 1 directly shows that the established results of the
time-dependent Ginzburg Landau theory within the IC
approximation do not describe our data. We have incor-
porated in the TDGL theory the renormalization (R) of
the reduced temperature and the short-wavelength cutoff
(C), obtaining a single explicit expression for the finite-
frequency excess conductivity. With these modifications,
the RC-GL theory describes in full our data, in the tem-
perature and in the frequency dependence. With a reduced
parameter set we are able to fit at once four experimental
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curves for each sample. The very good fitting and remark-
able consistency of the parameters support the idea that
the proposed modifications of the TDGL model capture
the essential features of the complex excess conductivity
in YBCO. We have estimated the out-of-plane coherence
length, the in-plane penetration depth and the GL relax-
ation time. The latter appears longer than the BCS s-
wave value. This point, in qualitative agreement with the
expectations for d-wave superconductors, deserves further
experimental work in the future.

− Note added. After completing this manuscript, a
related work appeared, discussing a possible effect of the
cutoff close to Tc within a model for the ac fluctuation
conductivity similar to the one here presented [50]. Such
effect should manifest itself in an increasing T× with the
frequency. This is qualitatively consistent with our data,
see Table 1.

We thank D. Neri for help and for many useful discus-
sions in the early stage of this work, M.W. Coffey and T.
Mishonov for useful discussions and stimulating correspon-
dence, R. Raimondi for useful discussions. Work in Salerno
was partially supported by a MURST-COFIN 2000 project.
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